Supervised fuzzy C-means clustering technique for security assessment and classification in power systems
نویسندگان
چکیده
Security assessment is an important concern in planning and operation studies of an electric power system. Conventional method of security evaluation is performed by simulation consisting of load flow program and transient stability analysis, consuming long computer time and generating voluminous results. This paper presents a practical Pattern Recognition (PR) approach for security assessment in power systems. The problem of security assessment is focused in two modes, viz., static and transient. Static security pertains to the study of violation of system components when subjected to contingencies like line/generator outages. Transient Security study deals with system dynamic behavior when subjected to severe perturbations like three phase faults. A Supervised Fuzzy C-Means (SFCM) algorithm is proposed in the classification phase of PR system for security assessment. The proposed algorithm is tested on 39 Bus New England and IEEE 57 Bus systems. The classification results of the proposed SFCM classifier is compared with the Method of Least Squares (MLS) and Multilayer Perceptron (MLP) classifiers. The results prove that the former gives high classification accuracy and less misclassification rate compared to the latter, enhancing the feasibility and applicability of SFCM algorithm for on-line security evaluation.
منابع مشابه
Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps
Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...
متن کاملEstimation of Seigniorage Laffer curve in IRAN: A Fuzzy C-Means Clustering Framework
There are two sources for governments to raise their revenues. The first is the direct taxation levied on output, and the second is seigniorage. Seigniorage is also known as printing new money and is defined as the value of real resources acquired by the government through its power of sovereignty on its monopoly of printing money. The purpose of this paper is to examine the Laffer curve for Se...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملUsing Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council
Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...
متن کاملWater Quality Zoning of Rivers by the Technique of Fuzzy Clustering Analysis
Zoning the pollution of a river may be the first or even the most important step in water quality management. In order to resolve its pollution, fuzzy clustering analysis may be used whenever a composite classification of water quality incorporates mutiple parameters
 
In such cases, the technique may be used as a complement or an alternative to comprehensive assessment. In fuzzy cluster...
متن کامل